Physiologically relevant oxidative degradation of oligo(proline) cross-linked polymeric scaffolds.

نویسندگان

  • Shann S Yu
  • Rachel L Koblin
  • Angela L Zachman
  • Daniel S Perrien
  • Lucas H Hofmeister
  • Todd D Giorgio
  • Hak-Joon Sung
چکیده

Chronic inflammation-mediated oxidative stress is a common mechanism of implant rejection and failure. Therefore, polymer scaffolds that can degrade slowly in response to this environment may provide a viable platform for implant site-specific, sustained release of immunomodulatory agents over a long time period. In this work, proline oligomers of varying lengths (P(n)) were synthesized and exposed to oxidative environments, and their accelerated degradation under oxidative conditions was verified via high performance liquid chromatography and gel permeation chromatography. Next, diblock copolymers of poly(ethylene glycol) (PEG) and poly(ε-caprolactone) (PCL) were carboxylated to form 100 kDa terpolymers of 4%PEG-86%PCL-10%cPCL (cPCL = poly(carboxyl-ε-caprolactone); i% indicates molar ratio). The polymers were then cross-linked with biaminated PEG-P(n)-PEG chains, where P(n) indicates the length of the proline oligomer flanked by PEG chains. Salt-leaching of the polymeric matrices created scaffolds of macroporous and microporous architecture, as observed by scanning electron microscopy. The degradation of scaffolds was accelerated under oxidative conditions, as evidenced by mass loss and differential scanning calorimetry measurements. Immortalized murine bone-marrow-derived macrophages were then seeded on the scaffolds and activated through the addition of γ-interferon and lipopolysaccharide throughout the 9-day study period. This treatment promoted the release of H(2)O(2) by the macrophages and the degradation of proline-containing scaffolds compared to the control scaffolds. The accelerated degradation was evidenced by increased scaffold porosity, as visualized through scanning electron microscopy and X-ray microtomography imaging. The current study provides insight into the development of scaffolds that respond to oxidative environments through gradual degradation for the controlled release of therapeutics targeted to diseases that feature chronic inflammation and oxidative stress.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Influence of network structure on the degradation of photo-cross-linked PLA-b-PEG-b-PLA hydrogels.

Triblock copolymers of functionalized poly(lactic acid)-b-poly(ethylene glycol)-b-poly(lactic acid) (PLA-b-PEG-b-PLA) have been widely investigated as precursors for fabricating resorbable polymeric drug delivery vehicles and tissue engineering scaffolds. Previous studies show degradation and erosion behavior of PLA-b-PEG-b-PLA hydrogels to rely on macromer chemistry as well as structural chara...

متن کامل

Effect of Oxidative Stress on Homer Scaffolding Proteins

Homer proteins are a family of multifaceted scaffolding proteins that participate in the organization of signaling complexes at the post-synaptic density and in a variety of tissues including striated muscle. Homer isoforms form multimers via their C-terminal coiled coil domains, which allows for the formation of a polymeric network in combination with other scaffolding proteins. We hypothesize...

متن کامل

Preparation and characterization of PCL polymeric scaffolds coated with chitosan/ bioactive glass/gelatin nanoparticles using the tips methodology for bone tissue engineering

Objective(s): The present study aimed to prepare polycaprolactone (PCL) scaffolds with high porosity and pore interconnectivity, in order to copy the microstructure of natural bones using the thermally induced phase separation (TIPS) technique. Materials and Methods: The scaffolds were coated with chitosan (CH), bioactive glass (BG), and gelatin nanoparticles (GEL NPs) and assessed using ...

متن کامل

Mathematical modeling of degradation for bulk-erosive polymers: applications in tissue engineering scaffolds and drug delivery systems.

The degradation of polymeric biomaterials, which are widely exploited in tissue engineering and drug delivery systems, has drawn significant attention in recent years. This paper aims to develop a mathematical model that combines stochastic hydrolysis and mass transport to simulate the polymeric degradation and erosion process. The hydrolysis reaction is modeled in a discrete fashion by a funda...

متن کامل

Characterization of knitted polymeric scaffolds for potential use in ligament tissue engineering.

Different scaffolds have been designed for ligament tissue engineering. Knitted scaffolds of poly-L-lactic acid (PLLA) yarns and co-polymeric yarns of PLLA and poly(glycolic acid) (PLGA) were characterized in the current study. The knitted scaffolds were immersed in medium for 20 weeks, before mass loss, molecular weight, pH value change in medium were tested; changes in mechanical properties w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biomacromolecules

دوره 12 12  شماره 

صفحات  -

تاریخ انتشار 2011